On the Effectiveness of Simple Success-Based Parameter Selection Mechanisms for Two Classical Discrete Black-Box Optimization Benchmark Problems
نویسندگان
چکیده
Despite significant empirical and theoretically supported evidence that non-static parameter choices can be strongly beneficial in evolutionary computation, the question how to best adjust parameter values plays only a marginal role in contemporary research on discrete black-box optimization. This has led to the unsatisfactory situation in which feedback-free parameter selection rules such as the cooling schedule of Simulated Annealing are predominant in state-of-the-art heuristics, while, at the same time, we understand very well that such time-dependent selection rules can only perform worse than adjustment rules that do take into account the evolution of the optimization process. A number of adaptive and self-adaptive parameter control strategies have been proposed in the literature, but did not (yet) make their way to a broader public. A key obstacle seems to lie in their rather complex update rules. The purpose of our work is to demonstrate that high-performing online parameter selection rules do not have to be very complicated. More precisely, we experiment with a multiplicative, comparison-based update rule to adjust the mutation probability of a (1+1) Evolutionary Algorithm. We show that this simple self-adjusting rule outperforms the best static unary unbiased black-box algorithm on LeadingOnes, achieving an almost optimal speedup of about 18%.
منابع مشابه
Automated Algorithm Selection on Continuous Black-Box Problems By Combining Exploratory Landscape Analysis and Machine Learning
In this paper, we build upon previous work on designing informative and efficient Exploratory Landscape Analysis features for characterizing problems’ landscapes and show their effectiveness in automatically constructing algorithm selection models in continuous black-box optimization problems. Focussing on algorithm performance results of the COCO platform of several years, we construct a repre...
متن کاملA Mathematical Analysis of New L-curve to Estimate the Parameters of Regularization in TSVD Method
A new technique to find the optimization parameter in TSVD regularization method is based on a curve which is drawn against the residual norm [5]. Since the TSVD regularization is a method with discrete regularization parameter, then the above-mentioned curve is also discrete. In this paper we present a mathematical analysis of this curve, showing that the curve has L-shaped path very similar t...
متن کاملOn the Performance of the Pareto Set Pursuing (PSP) Method for Mixed-Variable Multi-Objective Design Optimization
Practical design optimization problems require use of computationally expensive “blackbox” functions. The Pareto Set Pursuing Method (PSP for solving multi-objective optimization problems with expensive black-box functions was developed originally for continuous variables. In this paper, modifications are made to allow solution of problems with mixed continuous-discrete variables. A performance...
متن کاملGeneralized Reinforcement Learning for Manipulation Skills – Combining Low-dimensional Bayesian Optimization with High-dimensional Motion Optimization
This paper addresses the problem of how a robot can autonomously improve a manipulation skill in an efficient and secure manner. Instead of using the standard reinforcement learning formulation where all objectives are defined in a single reward function, we propose a generalized formulation that consists of three components: 1) A known analytic cost function; 2) A black-box reward function; 3)...
متن کاملOptimum Structural Design with Discrete Variables Using League Championship Algorithm
In this paper a league championship algorithm (LCA) is developed for structural optimization where the optimization variables are of discrete type and the set of the values possibly obtained by each variable is also given. LCA is a relatively new metaheuristic algorithm inspired from sport championship process. In LCA, each individual can choose to approach to or retreat from other individuals ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018